Microstructure-Based Fatigue Strength Estimation for Design and Qualification of Heavy-Section Ductile Iron Castings
von Felix Weber
Taschenbuch
Jetzt kaufen
Durch das Verwenden dieser Links unterstützt du READO. Wir erhalten eine Vermittlungsprovision, ohne dass dir zusätzliche Kosten entstehen.
Beschreibung
Modern cast irons, such as high silicon ductile cast iron EN-GJS-500-14, are increasingly considered in heavy-section structural components, e.g., used in wind turbines. Increasing demands towards lightweight design and controllability of the component’s quality require a description of the local microstructure gradients and resulting mechanical properties. Thus, this work presents a fundamental concept for the micromechanical extension of modern design guidelines for heavy-section castings of ductile cast iron exemplarily demonstrated for the grade EN-GJS-500-14.
The prediction of the local microstructure is based on the systematic correlation of casting process simulation and metallographic microstructure characterization. A neural network is trained to predict the local formation of graphite precipitates. The available microstructure descriptors for ductile cast iron are extended using the two-point statistic, whose applicability is demonstrated for experimental and artificial micrographs.
The microstructure-dependent fatigue strength is experimentally determined by thermistor-based temperature monitoring during a load increase test. The monitored temperature is evaluated using a Palmgren-Miner-based damage evaluation concept. The applicability of the methodology is demonstrated by comparing the results to statistical-experimental S-N-curves.
Simulative-synthetic S-N-curves are computed using a finite element implementation of the Tanaka-Mura model. The simulative-synthetic S-N-curves are compared to experimental S-N-curves, such that model validity and model sensitivity are demonstrated.
This work presents a systematic integration for the consideration of local microstructure gradients and resulting mechanical properties in the design of heavy-section castings.
Haupt-Genre
Fachbücher
Sub-Genre
Technologie
Format
Taschenbuch
Seitenzahl
220
Preis
59.80 €
Verlag
Shaker
Erscheinungsdatum
25.06.2025
ISBN
9783844099836
Beschreibung
Modern cast irons, such as high silicon ductile cast iron EN-GJS-500-14, are increasingly considered in heavy-section structural components, e.g., used in wind turbines. Increasing demands towards lightweight design and controllability of the component’s quality require a description of the local microstructure gradients and resulting mechanical properties. Thus, this work presents a fundamental concept for the micromechanical extension of modern design guidelines for heavy-section castings of ductile cast iron exemplarily demonstrated for the grade EN-GJS-500-14.
The prediction of the local microstructure is based on the systematic correlation of casting process simulation and metallographic microstructure characterization. A neural network is trained to predict the local formation of graphite precipitates. The available microstructure descriptors for ductile cast iron are extended using the two-point statistic, whose applicability is demonstrated for experimental and artificial micrographs.
The microstructure-dependent fatigue strength is experimentally determined by thermistor-based temperature monitoring during a load increase test. The monitored temperature is evaluated using a Palmgren-Miner-based damage evaluation concept. The applicability of the methodology is demonstrated by comparing the results to statistical-experimental S-N-curves.
Simulative-synthetic S-N-curves are computed using a finite element implementation of the Tanaka-Mura model. The simulative-synthetic S-N-curves are compared to experimental S-N-curves, such that model validity and model sensitivity are demonstrated.
This work presents a systematic integration for the consideration of local microstructure gradients and resulting mechanical properties in the design of heavy-section castings.
Haupt-Genre
Fachbücher
Sub-Genre
Technologie
Format
Taschenbuch
Seitenzahl
220
Preis
59.80 €
Verlag
Shaker
Erscheinungsdatum
25.06.2025
ISBN
9783844099836