On the Detection and Selection of Informative Subsequences from Large Historical Data Records for Linear System Identification

On the Detection and Selection of Informative Subsequences from Large Historical Data Records for Linear System Identification

Paperback

Durch das Verwenden dieser Links unterstützt du READO. Wir erhalten eine Vermittlungsprovision, ohne dass dir zusätzliche Kosten entstehen.

Beschreibung

Performing experiments for system identification of continuously operated plants might be restricted as it can impact negatively normal production. In such cases, using historical logged data can become an attractive alternative for system identification. However, operating points are rarely changed and parameter estimation methods can suffer numerical problems. Three main drawbacks of current approaches in this research area can be discussed. Firstly, detection tests are not adapted for dynamical systems. Secondly, methods to define upper interval bounds are not robust to colored noise that is more likely to be found in real applications. Thirdly, model estimation with the retrieved data is not supported and the performance of the method cannot be assessed. In the method proposed in this work, called data selection for system identification (DS4SID), previous drawbacks are addressed and robust tests are designed and implemented. The performance of DS4SID is evaluated in a simulated and laboratory multivariate processes. A process unit of the lab-scale factory “μPlant” is used as industryoriented case study. Models estimated with selected data are shown to have similar performance than estimates with the entire data set.
Haupt-Genre
Fachbücher
Sub-Genre
Technologie
Format
Paperback
Seitenzahl
166
Preis
40.10 €

Mehr von David Leonardo Arengas Rojas

Alle
On the Detection and Selection of Informative Subsequences from Large Historical Data Records for Linear System Identification

Mehr aus dieser Reihe

Alle
Klassifikationsgestützte On-line-Adaption eines robusten beobachterbasierten Fehlerdiagnoseansatzes für nichtlineare Systeme
Zur Identifikation mechatronischer Stellglieder mit Reibung bei Kraftfahrzeugen
Sensordatenfusionsansätze in der Thermografie zur Verbesserung der Messergebnisse
Multi-Robot Task Allocation for Inspection Problems with Cooperative Tasks Using Hybrid Genetic Algorithms
Gasleckortungsmethode für autonome mobile Inspektionsroboter mit optischer Gasfernmesstechnik in industrieller Umgebung
Dynamische Analyse großer verkoppelter Systeme mit Methoden der Komplexen Netzwerke am Beispiel des Inverse-Response-Verhaltens
Close range 3D thermography: real-time reconstruction of high fidelity 3D thermograms
Zur regelungsorientierten Identifikation nichtlinearer Systeme mittels lokal affiner Takagi-Sugeno-Fuzzy-Modelle
System Identification of Stochastic Nonlinear Dynamic Systems using Takagi-Sugeno Fuzzy Models
Automatic 3D Visualization and Tracking of Gaseous Organic Volatile Compound Emissions by means of Spatial and Temporal Information from an Optical Gas Imaging Stereo System
On the Detection and Selection of Informative Subsequences from Large Historical Data Records for Linear System Identification